nuclear power

Andrew Simms, energy and green herrings

Posted on Updated on

Andrew Simms of The New Economics Foundation has a book out: Cancel The Apocalypse. He appears to have a large number of apocalypses, and mini-apocalypses, in mind, but I’ll just stick to what he says we should do about climate change. What we discover here is a rather long list of green herrings, that is red herrings with a Green tint. Read the rest of this entry »


Fukushima and the harm of inaccurate reporting

Posted on Updated on

The World Health Organisation has released a preliminary report into the health impacts of Fukushima. The main conclusion of the report was that there may be a small increase in cancer in the region around Fukushima. In general media headlines did a reasonable job reflecting this, with words such as “slight,” “little” and “small”appearing in most of them, as a google news search shows:


A noteable exception however was The Guardian, which choose something rather more alarming:


“Cancer risk 70% higher for females in Fukushima area, says WHO.” A quick look at the text shows that the 70% refers to female infants, and thyroid cancers. Now, it should be clear to anyone that infants are a subset of women and thyroid cancer is a subset of cancer. I sent a short tweet to The Guardian’s environment team and their environment web editor Adam Vaughan to see if I could get the headline corrected, and proceeded to defend it.

Quite astonishingly Vaughan saw nothing wrong with the headline:

A rather remarkable admission that totally misleading lines are acceptable. Vaughan then suggested that I contact the reader’s editor, re-iterated that the headline was accurate, and then blocked me on Twitter.

This is the kind of behaviour and reporting you expect from someone like James Delingpole, not a reporter at a supposedly serious newspaper such as The Guardian. Consider if a woman who had lived in Fukushima in March 2011, and had been exposed to radiation in March 2011 read this headline. She would probably respond with an understandable amount of fear, and all because of irresponsible journalism. The headline and Vaughan’s response to criticism are both fundamentally unethical and a sad reflection of how ideology can trump human decency.

People affected by the Fukushima disaster deserve accurate information, and not shameful alarmism, which in itself may cause serious health impacts.

Fact Check: Comparing wind and nuclear power

Posted on Updated on

Climate Scientist Kevin Anderson has criticised claims made by Sue Ion, a former technical director of British Nuclear Fuels, made on the BBC. Anderson makes the following quite strongly worded criticism of Ion:

Early on in the programme Sue emphasised how she is committed “to try and do more to help get facts across as opposed to just let the media run with whatever they thought … sometimes stories run when they actually do have no foundation in fact”.

Certainly the world of energy and climate change is awash with educated eloquence trumping quantitative analysis – and any attempt to rescue the latter from the former has to be welcomed.

However, despite Sue Ion’s concern about energy stories often having “no foundation in fact”,when it came to drawing comparisons between electricity generation from nuclear and wind power her comments only added to the misinformation that pervades energy debates.

Sue Ion suggests 1500 offshore wind turbines generate the same electricity as one nuclear power station; the real number is much lower – somewhere between 250 and 600.

So, Ion apparently had a figure that is three times higher than it should be. The comments by Ion can be heard about 20 minutes in. [Update:  in the comments section David has pointed out that Anderson has misunderstood what Ion was referring to. The question asked to her was in relation to a “nuclear power station,” not an individual reactor. Historically nuclear power stations in the UK have had two reactors, in France they often have four. The new nuclear power stations planned for the UK have more than 1 reactor, so this presumably is what Ion has in mind. So, Anderson should really be multiply his nuclear GW by 2.]

Below is the argument Anderson uses to counter Ion’s claim:

Calculations and Assumptions

The following calculations are premised on proposals for new-nuclear build,
assuming full operation by 2020 and assuming the load factor is significantly
improved from the UK’s experience of operating nuclear stations. The figures for
wind turbines similarly are premised on appropriately sited designs, with a good
capacity factor and assuming turbines at sizes equivalent to the larger models
now being installed and those likely to be installed before 2020.


Three reactor designs are now being considered for UK new-build.
§ Areva’s EPR – with a capacity of 1.6GW
§ Westinghouse’s AP1000 – with a capacity of 1.15GW
§ Hitachi-GE’s Advanced Boiling Water Reactor – with a capacity of 1.3GW
Assume an 85% load factor for all the nuclear designs
Note: this is 5% higher than is sometimes suggested should be the starting value
for nuclear load factors, and is 25 percentage points above the mean UK load
factor for nuclear power between 2007 ad 2011 (i.e. 60.1%).


Currently, installation of 6MW turbines is proceeding, with 8MW designs planned for
installation by ~2014, heading towards 10MW within a few more years. Some
companies are already proposing designs of up to 15MW per turbine. For comparing
with the nuclear designs operational by 2020, these calculations assume 6 to 10MW
turbine designs.
Assume a conservative capacity factor of 40% for offshore wind turbines.
For a well-sited large and offshore turbine, a 40% capacity factor is not
unreasonable figure to assume. It is worth noting, asthe capacity (MW per turbine)
increases, so does the hub height and hence the typical capacity factor. Moreover,
if sited off the West coast of the UK the capacity factor is likely to be higher still.


The three nuclear designs with a 85% load factor would generate between 8.6TWh and
11.9TWh each year
A 6MW and 10MW wind turbine with a 40% capacity factor would generate 21GWh
and 35GWh/year respectively.
Consequently, between 244 and 567 turbines are required to generate the same
quantity of electricity in a year as the three proposed new-nuclear designs

Who is correct?

Sadly, it appears that while Anderson is probably correct that Ion is making an inaccurate claim, he is also doing exactly what he has criticized Ion for doing, by correcting misleading information with misleading information.

First, consider that he uses turbine capacity of at least 6 MW. A quick look at Wikipedia will tell you that the average for existing UK offshore wind farms is slightly below 3.6 MW, with most wind farms using a 3.6 MW turbine. You can also see that 3.6 MW turbines predominate in the offshore wind farms that are currently being constructed. Ion’s remarks appear to clearly relate to existing wind farms, so exactly why Anderson is using a turbine capacity this large is unclear.

Anderson also claims that a 40% capacity factor for offshore wind farms is conservative. This may or may not be true for new offshore wind farms with 6 or 10 MW turbines, however for existing offshore wind farms it appears to be too high. Historic offshore wind farm capacity factors can be found from the UK government’s Department for Energy and Climate Change. These have been around 33-35% over the last few years.

So, let’s rephrase Ion’s claim and ask how many 3.6 MW turbines, at the UK average capacity factor of 35%, would provide as much electricity as a modern nuclear power plant. To get the same power as the 1.6 GW would take about 1,100 turbines. Matching Hitachi’s 1.3 GW reactor would take about 880 turbines.

What we are looking at is one of those rare occasions where the truth lies somewhere in between, and another example of people using numbers to make a point, and not to inform. [though I’ll now take back my comment about the truth lying somewhere in between, as Ion seems to have produced very reasonable numbers given that she was actually referring to a nuclear power station.]

Al Gore’s nuclear hypocrisy

Posted on Updated on


Over the weekend I had the pleasure of reading Al Gore’s latest volume, The Future. This not particularly tightly written book has among other things a section on biotechnology that shows that Gore’s attachment to science is somewhat fleeting. I may touch on that in a later post, however let’s consider a comment Gore makes about nuclear power.

In the climate change section entitled False Solutions, Gore expresses some scepticism on nuclear power, and says the following:

There is still a distinct possibility that the research and development of a new generation of smaller and hopefully safer reactors may yet play a significant role in the world’s energy future. We should know by 2030.

Similarly, in a Reddit Q & A, Gore bemoaned new reactor designs being long in the future:

New reactor designs hold promise but they are all at least 15 years away.

So, new nuclear reactor designs are 15-18 years away from coming about. Certainly not a good situation.

However, instead of moving the clock forward 18 or so years, let’s move it back 19 years. In 1994 the Clinton-Gore administration shut down work on the Integral Fast Reactor, the very type of reactor Gore is complaining about being years away. If this decision had not been taken we would not be looking at new reactors by 2030, but instead new reactors up and running right now, and also capable of running on nuclear waste.

So, what we have here is Al Gore using a situation he helped bring about as a reason to be skeptical of nuclear power. Instead what he ought to do is apologise for the wrong headedness of the Clinton-Gore administration on the issue, and support calls for the Obama administration to restart the IFR programme. Gore, unfortunately has long had a blind spot on nuclear power.

Wind Farms: Bird Killers?

Posted on Updated on

[Update: after some feedback on Twitter, and in the comments  I should point out the main objection to the Spectator article I refer to. I probably didn’t do a good job making it clear originally. The piece claims wind turbines are an extinction threat for many species. The “threat status” assessments of the species the article refers to indicate that this is probably not the case.]

Wind turbines kill birds and bats. A rather stark and provocative sentence, yet somewhat uninformative. This week’s Spectator however has an article which goes somewhat further. Written by Clive Hambler, of Oxford University, it starts like this:

Wind farms are devastating populations of rare birds and bats across the world, driving some to the point of extinction. Most environmentalists just don’t want to know. Because they’re so desperate to believe in renewable energy, they’re in a state of denial. But the evidence suggests that, this century at least, renewables pose a far greater threat to wildlife than climate change. Read the rest of this entry »

Germany’s Lost Decade

Posted on Updated on

Germany appears intent on doing three things faster than almost any developed country: expanding renewable power, closing nuclear power plants, and building new coal power plants. The first two are much praised by those who drink the Energiewende Kool Aid, while the third is often treated as some kind of myth by the same people. Germany’s Environment Minister however recognizes it is not a myth, but appears to believe in magic instead. After the opening of 2.2 GW coal power plant earlier this year, he absurdly stated the following:

“If one builds a new state-of-the-art lignite power plant to replace several older and much less efficient plants, then I feel this should also be acknowledged as a contribution to our climate protection efforts.”

Now, one would have hoped that such statements would kill off Germany’s hopes of being a model Green country. Read the rest of this entry »

When is a GW not a GW?

Posted on Updated on

A report in the Guardian today included a rather curious statement. Covering a speech by Labour Party leader Ed Milliband at Whitelee Wind Farm near Glasgow, Damian Carrington claimed the following:

The windfarm, which spreads out across low, heather-clad hills, currently has 140 turbines and will add another 75 turbines soon, giving it a capacity equivalent to more than half a nuclear power station (about 550MW).

Now, it is true that the capacity of most nuclear power plants is somewhere around 1000 MW, however one would expect that a journalist who regularly writes about energy would understand that 550 MW of wind was not equivalent to 550 MW of nuclear. Read the rest of this entry »